Онлайн калькулятор расчет стойки из швеллера, двутавра, тавра и уголка на прочность, устойчивость и допустимую гибкость

Онлайн калькулятор расчета стойки на прочность, устойчивость и гибкость

Расположенный ниже онлайн калькулятор предназначен для расчёта центрально-нагруженной стойки (колонны) из стального проката круглого, квадратного, прямоугольного и шестигранного сечения на прочность, устойчивость и изгиб.

Если Вам нужно рассчитать онлайн прочность, изгиб и устойчивость стойки из СТАЛЬНЫХ ТРУБ, смотрите ТУТ . Или расчет стойки из ШВЕЛЛЕРА, ДВУТАВРА, ТАВРА и УГОЛКА на прочность, устойчивость и гибкость.

При проектировании строительных конструкций, необходимо принимать схемы, обеспечивающие прочность, устойчивость и пространственную неизменяемость сооружения в целом, а также его отдельных элементов при монтаже и эксплуатации.

Поэтому стойку, находящуюся под действием сжимающей её нагрузки необходимо проверять:

  1. На прочность;
  2. Устойчивость;
  3. Допустимую гибкость.

Для расчета предлагаем вам воспользоваться онлайн калькулятором, специально разработанным для нашего сайта!

Конструкционные особенности ферм

Составляющие элементы конструкции фермы:

  Отводы канализационные пластиковые 110, размеры и виды

  • Пояс.
  • Стойка – вертикальный элемент, соединяющий верхний и нижний пояс.
  • Раскос (подкос).
  • Шпренгель – опорный раскос.
  • Фасонки, накладки, косынки, заклепки, болты – всевозможные вспомогательные и крепежные материалы.

Высоту фермы считают от самой нижней точки нижнего пояса до самой верхней точки. Пролет – расстояние между опорами.

Подъем – отношение высоты фермы к пролету. Панелью называют расстояние между узлами пояса.

Для расчета нагрузок на профили используются методы:

Калькулятор расчета колонны из профильной трубы

Выбирая профильный прокат, клиент должен осознать, что точные вычисления возможных нагрузок, в зависимости от линейных и иных параметров стояков – очень важны. Любая создаваемая конструкция рассчитана на конкретный вес.

  • Категорически запрещается размещать на ней соединения, предметы, масса которых, с учетом воздействия погодных факторов, будет больше допустимой.
  • Чтобы знать, для чего нужен расчет нагрузки на профильную трубу, посмотрим, где она используется.
  • Стояки с профильным сечением нашли свое применение в различных сферах жизнедеятельности человека.
  • С их помощью:
  • монтируются навесы на балконах, верандах, возле частных домов;
  • собираются лестницы, подиумы, сцены.

Этот список можно продолжать, но главное, что нужно запомнить:

чтобы конструкции были безопасными, надежными, служили долго необходимо провести расчет вертикальной нагрузки на профильную трубу. Если этого не сделать, то система может не выдержать веса, что приведет к нежелательным последствиям.

Популярность профильных труб объясняется низкой стоимостью, небольшой массой, высокой прочностью при изгибе

. Выбирая прокат с прямоугольным или квадратным сечением, большинство заказчиков понимают важность расчета нагрузки на профильную трубу. Учитывается соответствие линейных размеров профилей к возможной силе механического воздействия на деталь.

Что будет, если не учесть возможного воздействия тяжести на конструкцию?

О таком думать даже нельзя, поскольку при воздействии максимально допустимого веса возможны2 варианта :

  • безвозвратный изгиб трубы, поскольку она потеряет свою упругость;
  • разрушение целой конструкции, что чревато негативными последствиями.

Холодная гибка труб. Глубина прогиба ведущим валом

Калькулятор рассчитывает глубину прогиба профиля трубогибом или гибочным станком для получения заданных параметров.

Эта страница существует благодаря следующим персонам

Timur

Anton

Статья написана в ответ на запрос пользователя, который хотел вычислять глубину прогиба профиля ведущим валом, для получения изогнутой трубы с заданными параметрами. До запроса я даже и не знал, что есть специальные машины для холодной гибки труб. Причем бывают как и промышленные гибочные станки, так и ручные гидравлические трубогибы.

Не всегда требуется расчет

Если вы решили использовать профильную трубу для сооружения калитки, ограждения, перил, то расчет на изгиб проводить не обязательно, поскольку нагрузка на такие системы – минимальная.

Для точности и быстроты расчета нагрузки на профильную трубу можно воспользоваться калькулятором или программой SketchUP. (Скачать торрентом — Официальная русская версия! Разрядность: 64bit, Язык интерфейса: Русский, Таблетка: Присутствует)

  Хомут для врезки в водопровод: Обзор и советы +Видео

Расчет будет правильным при соблюдении таких 3-ех условий:

  1. Если в системе будут опоры и верхняя рама, в которых будут возникать механические (не электрические!) напряжения, то усилия будут распределяться между несколькими стояками, в зависимости от их соединения между собой.
  2. Достаточно большая высота системы способна уменьшить несущую способность отдельных опор. Связано это с появлением крутящего момента в стояках.
  3. Чтобы получить надежную металлоконструкцию большой высоты, нужно добавить дополнительные опоры. Благодаря ребрам жесткости, которыми будут связаны между собой стояки, механическое напряжение сможет распределиться более равномерно.

Выполняя непосредственные вычисления, необходимо владеть информацией о:

1. Типах возможных нагрузок.

Они могут быть:

  • стабильными, при которых учитывается вес деталей конструкции, масса грунта, давление кровли и т.п.;
  • долговременными, которые будут действовать на протяжении большого периода, но могут измениться в любой момент: масса котла, лестничного марша, стен из кирпича;
  • кратковременными, действующие на протяжении малого промежутка (атмосферные осадки, масса посетителей, транспортных средств);
  • особыми, что вызываются непредвиденными обстоятельствами: ливнями, землетрясениями, извержениями вулканов, взрывами и пр…

2. Размерах профильных труб, формы сечений.

3. Суммарном напряжении строения.

4. Прочностных характеристиках стали.

Для расчета нагрузки на профильную трубу пользуются:

  • таблицами;
  • математическими формулами;
  • специальным онлайн калькулятором.

Применяем таблицы

При применении первого метода нужно сопоставление физических характеристик трубы, которая будет применяться для сооружения системы, с табличными данными. Для этого берут значения величин из таблиц 1 или 2, в зависимости от типа профиля.

Таблица 1. Нагрузки для стояков квадратного сечения

Сечение, мм Максимально возможная масса, кг
Длина пролета, м
1 2 4 6
40х40х2 709 173 35 5
50х50х2 1165 286 61 14
60х60х3 2393 589 129 35
80х80х3 4492 1110 252 82
100х100х4 9217 2283 529 185
140х140х4 19062 4736 1125 429

Таблица 2. Нагрузки для стояков прямоугольного сечения

(для вычислений используют длинную сторону)

Сечение, мм Максимально возможная масса, кг
Длина пролета, м
1 3 4 6
50х25х2 684 69 34 6
60х40х3 1255 130 66 17
80х40х3 2672 281 146 43
80х60х3 3583 380 199 62
100х50х4 5489 585 309 101
120х80х3 7854 846 455 164

Эти таблицы имеют данные о максимально допустимых массах. При таком воздействии на профиль труба не разрушится, а лишь согнется.

Но стоит увеличить массу хотя бы на 0,5 кг, система может полностью деформироваться, что приведет к разрушению.

В связи с этим, на практике выбирается деталь прямоугольного или квадратного сечения, запас прочности которой был бы большим от минимального хотя бы в 2 раза.

Преимущества табличного метода

Табличный метод отличается высокой точностью. Для его применения нужно обладать информацией о видах опор, способах фиксации на них профилей, типах нагрузок.

Кроме этого,для полных расчетов нагрузок необходимо иметь данные о :

  • моментах инерции профильной прямоугольной или квадратной трубы, значение которых можно взять из таблиц, начиная от сечений 15х15х1 5 и оканчивая 100х100х4 и выше;
  • длине пролетов;
  • величине тяжести на каждый стояк;
  • коэффициентах модулей упругости (взять из СНиП).

Онлайн калькуляторы и программы расчета конструкций

Единственный в своем роде сайт практикующего инженера, предоставляющий калькуляторы для строительного проектирования с расчетами по СП, СНиП, здесь присутствуют калькуляторы расчета железобетонных, стальных конструкций, калькуляторы расчета оснований и фундаментов.

Цель калькулона автоматизировать составление коммерческого предложения на проектные работы, по справочникам базовых цен, утверждённых правительством Москвы и России. Калькулон полезен для руководителей и сметчиков проектных организаций, он позволяет быстро определить приблизительную стоимость любых проектных работ, на которые распостраняется действие справочников базовых цен.

  • Сalculon — Расчёт стоимости проектных работ по сборнику базовых цен СБЦ
  • Онлайн калькулятор на этом сайте поможет произвести следующие расчеты: расход материалов, необходимых для возведения всех основных элементов постройки; расчет необходимых размеров и параметров элементов; расчет требуемых характеристик строительных материалов.
  • Бесплатные строительные онлайн калькуляторы и расчеты

Интересно выполненные калькуляторы, помогут при строительстве своего каркасного дома, решат необходимость подсчета количества строительных материалов или расчета размеров той или иной детали конструкции.

Расчеты строительных материалов, строительные калькуляторы и конструкторы

Удобный бесплатный матричный онлайн калькулятор. На сайте реализованы все основные операции матричного калькулятора над матрицами, а также методы, задействующие матрицы для решения систем линейных уравнений.

Матричный онлайн калькулятор

Конвертируйте легко и просто!

Зарубежные

На сайте более, чем несколько сотен калькуляторов для решения сложных уравнений и формул в области электричества, механики, химии, электроники, гражданского строительства,металлургии, нефти и газа, оптики,физики, математики и др.

Вы инженер-механик, инженер-конструктор, инженер-чертежник, технический работник или студент? Нужно работать с профессиональными вычислительными системами? Но Вы не готовы или не можете платить тысячи рублей за неадекватно сложные или непонятные решения? Тогда Вам просто нужен MITCalc

  1. Mechanical, Industrial and Technical Calculations
  2. Неплохие онлайн калькуляторы строительной тематики, статические расчеты балок и др.
  3. Calculator for Overhanging beam with point load

Расчет деревянных конструкций. Эти интерактивные инструменты доступны бесплатно, чтобы помочь инженерам и архитекторам при проектировании зданий с использованием древесины в качестве материала конструкций.

Bendingmomentdiagram — это бесплатный онлайн калькулятор, который генерирует эпюры поперечных сил и изгибающих моментов для большинства простых балок. Калькулятор является полностью настраиваемым,чтобы удовлетворить большинство схем балок, что недоступно в большинстве других калькуляторов.

Прекрасно оформленный вариант калькуляторов для расчета балок из стали, древесины и опорных плит с анкерными болтами.

Сфера применения

Кровли данного типа используются повсеместно:

  1. Их применяют при строительстве навесов, террас, хозяйственных пристроек и др.
  2. Они оптимально подходят для обустройства крытых парковочных мест для автомобилей, спецтехники и коммерческого транспорта: например, микроавтобусов и грузовых авто. Поскольку металлические стропила позволяют перекрывать широкие пролеты, это дает возможность создавать не одиночные крытые парковки, а просторные стоянки, рассчитанные на 4-5 машин и более.
  3. Еще один вариант использования односкатных крыш из профильной трубы в частном строительстве – возведение беседок на территориях загородных домов и дач.
  4. В коммерческой сфере такие конструкции применяют для строительства ангаров, цехов, мастерских и других объектов. Их целесообразно использовать при возведении крупных складских комплексов.

Односкатная кровля из профильной трубы не только обеспечит безопасность людей и имущества, но и защитит от неблагоприятных факторов окружающей среды. При необходимости ее можно в дальнейшем модернизировать и увеличивать в размерах – например, если необходимо расширить общую площадь склада, ангара или другого здания.

Читайте также:  Как самостоятельно построить столбчатый фундамент из пвх труб - пошаговая инструкция

Конструирование и расчет базы колонны

  • Сбор нагрузок на балки перекрытия онлайн
  • Расчет квадратной трубы
  • Расчет двутавра
  • Расчет швеллера
  • Расчет уголка
  • Расчет деревянной балки

⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

Базу колонны принимаем в соответствии с рис. 5.2. Торцы стержней колонн после приварки траверс фрезеруются и опираются на заранее поставленные и выверенные опорные плиты со строганной верхней плоскостью.

Рис. 5.2. База колонны.

Рабочая площадь опорной плиты определяется из условий, что наибольшее суммарное напряжение в бетоне фундамента по краю плиты не должно превышать расчетного сопротивления бетона (рис. 5.3):

  Обзор популярных водяных розеток (поливочных гидрантов).

Рис. 5.3. Эпюра давлений в бетоне под опорной плитой.

  • где M – расчетное значение момента; М = 109,98 кН·м = 10 998 кН·см;
  • N – расчетное сопротивление продольной силы; N = 454,7 кН;
  • Aпл – площадь плиты, определяемая по формуле:
  • Апл = Впл · Lпл,
  • где Впл – ширина опорной плиты, назначаемая по конструктивным соображениям по формуле:
  • Впл = bf + 2 · tтр + 2 · (30…80),
  • где bf
  • – ширина полки колонны;bf = 200 мм;
  • tтр
  • – толщина траверсы, принимаемая равной 10…14 мм; примемtтр = 10 мм;
  • Впл = 200 + 2 · 10 + 2 · 30 = 280 мм = 28 см;
  • Lпл
  • – длина опорной плиты, определяемая из условий прочности бетона по формуле:
  • Rbloc
  • – расчетное сопротивление бетона при местном сжатии, определяемое по формуле:
  • Rbloc = φb · Rb,
  • где Rb
  • – расчетное сопротивление бетона при осевом сжатии; для бетона класса В20Rb = 1,15 кН/см2;
  • φb
  • – коэффициент увеличения расчетного сопротивления бетона, принимаемый в зависимости от соотношения рабочей площади опорной плиты и площади верхнего обреза фундамента;φb = 1,2;
  • Rbloc = 1,2 ·1,15 = 1,38 кН/см2;
  • Принимаем Lпл = 49,0 см.
  • Апл = 28 · 49 = 1 372 см2;
  • Wпл – момент сопротивления опорной плиты, определяемый по формуле:

Толщина опорной плиты определяется ее работой на изгиб под действием реактивного давления фундамента (рис. 5.3). В принятой конструктивной схеме имеются три участка плиты с различными условиями опирания. Необходимо определить изгибающие моменты на каждом участке и по наибольшему из них назначить толщину плиты. Моменты определяются от действия максимального давления на каждом участке плиты.

  1. Участок 1 – консольный свес:
  2. Расчетный момент на участке 1 определяется по формуле:
  3. где σ1 – максимальное давление реактивного опора фундамента но полосу участка 1 шириной 1 см; σ1 = = 1,38 см2;
  4. – величина консоли участка 1, определяется по формуле:
  5. Участок 2 – опирание по трем сторонам:
  6. Расчетный момент на участке 2 определяется в зависимости от отношения длины ( = bf = 20см) участка 2 к его ширине (b2). Ширина участка 2, определяется по формуле:
  7. где h – высота сечения колонны; h = 40 см;
  8. При b2/ < 0,5 (b2/ = 0,2) расчетный момент определяется как для консольного свеса по формуле:
  9. где σ2 – максимальное давление реактивного опора фундамента но полосу участка 2 шириной 1 см; σ2 = = 1,38см2;
  10. Участок 3 – опирание по четырем сторонам:
  11. Расчетный момент на участке 3 определяется по формуле:
  12. М3 = α · σ3 ·
  13. где σ3 – максимальное давление реактивного опора фундамента но полосу участка 3 шириной 1 см; определяется геометрически по формуле:
  14. где tf – толщина полки колонны; tf = 1,0 см;
  15. b3 – длина участка 3, определяемая по формуле:

α – коэффициент, определяемый по табл. 4.4 «Методических указаний» в зависимости от отношения длины (b3 = 38 см) участка 3 к его ширине ( ). Ширина участка 3, определяется по формуле:

  • где tw – толщина стенки колонны; tw = 0,8 см;
  • При b3/ > 2 (b3/ = 38,0 / 9,6 = 3,96) коэффициент α = 0,125;
  • М3 = 0,125 · 1 · = 11,5 кН·см.
  • Выберем из расчетных моментов на участках 1, 2, 3 максимальный Mmax = M2 = 13,97 кН·см. Определим требуемую толщину опорной плиты по формуле:
  • гдеRy – расчетное сопротивление стали; Ry = 24 кН/см2;
  • С учетом будущей фрезеровки опорной плиты, принимаем толщину плиты больше требуемой на 1 мм, причем принятая толщина плиты должна соответствовать толщине прокатных листов. Принимаем толщину плиты
  • Расчет траверсы
  • Если торец не фрезерован, высота траверсы определяется из условий работы на срез сварных швов крепления траверсы к стенкам колонны. Усилие, приходящееся на один шов, определяется по формуле:

где Amp – площадь, с которой собирается реактивное давление фундамента на один шов траверсы (заштрихованная область на рис. 5.3);

  1. — максимальное напряжение в бетоне фундамента;
  2. Высота траверсы принимается по требуемой длине шва lw, которую можно определить по формуле:
  3. где Nmp – расчетное усилие, приходящееся на шов; Nmp = 473,34 кН;

βf – коэффициент глубины проплавления шва, определяемый по табл. 20 «Нормативных и справочных материалов». Для полуавтоматической сварки при катете шва до 8 мм βf = 0,9;

  Принцип работы трехходового крана для манометра

Kf – катет углового шва; Kf = 0,8 см;

Rwf – расчетное сопротивление углового шва, определяемое по табл. 19 «Нормативных и справочных материалов». Для сварки электродами Э-42

Rwf = 18 кН/см2;

При этом требуемая длина шва должна удовлетворять условию lw≤85·βf ·Kf. Данное условие соблюдается. Требуемая высота траверсы принимается на 1,0 см больше, чем требуемая длина шва, но при этом окончательная высота траверсы должна быть не менее 40,0 см.

Т.к. lw + 1,0 см = 36,52 + 1,0 = 37,52 см < 40,0 см, то принимаем высоту траверсы hmp = 40,0 см.

Расчет анкерных болтов.

Расчет анкерных болтов ведется на наиболее выгодную для них комбинацию усилий (Nmin и Mcoom принимаются по табл. 3.2).

При расчете анкерных болтов принимаем, что сила Z, стремящаяся оторвать базу колонны от фундамента, полностью воспринимается анкерными болтами. Величина этой силы определяется растянутой зоной эпюры напряжений (рис. 5.4) и вычисляется по формуле:

где – расчетный момент для анкерных болтов;

– расчетное усилие для анкерных болтов; ;

Рис. 5.4. Схема для определения усилий в анкерных болтах.

  • – расстояние от центра тяжести сжатой зоны эпюры напряжений до оси колонны; расстояние определяется геометрически по формуле:
  • где Lпл
  • – длина плиты базы колонны;Lпл = 49,0 см;
  • с – расстояние от края опорной плиты до нулевого значения эпюра давлений, определяемое геометрически по формуле:
  • где и — соответственно максимальные значения напряжений в бетоне фундамента при действии расчетных усилий для анкерных болтов, определяемые по формулам:
  • где Апл – площадь плиты; Апл = 1 372 см2;
  • Wпл – момент сопротивления опорной плиты; Wпл = 11 205 см3;
  • y – расстояние от центра тяжести сжатой зоны напряжений до оси анкерных болтов, расположенных со стороны растянутой зоны; расстояние y определяется по формуле:
  • Требуемая площадь анкерных болтов с одной стороны плиты определяется по формуле:
  • где Rbt – расчетное сопротивление анкерных болтов, принимаемое
  • Rbt = 18,5 кН/см2;

Определив требуемую площадь анкерных болтов, по табл. 4.5 «Методических указаний» подбираем анкерный болт необходимого диаметра. Для принимаем один анкерный болт М48 с площадью Abn = 14,72 см2. С противопожарной стороны плиты также принимаем один анкерный болт М48.

Расчет анкерной плитки.

Изгибающий момент в плитке при размещении болтов в середине пролета (рис. 5.5) определяется по формуле:

где bf – расстояние между траверсами (ширина полки колонны); bf = 20,0 см;

Требуемый момент сопротивления плитки определяется по формуле:

По сортаменту определяем требуемый номер швеллера, у которого 2 · Wxo ≥ Wmp. В качестве анкерной планки принимаем два швеллера 8 (Wобщ = 2 · 22,4 = 44,8 см3).

Рис. 5.5. Расчетная схема анкерной плитки.

⇐ Предыдущая3Следующая ⇒

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем…

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор…

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между…

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)…

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Обращаю ваше внимание, что в нецелых числах необходимо ставить точку, а не запятую, то есть, например, 5.7 м, а не 5,7. Также, если что-то не понятно, задавайте свои вопросы через форму комментариев, расположенную в самом низу.

Расчетная схема:

Длина пролета (L) — расстояние между опорами или длина консоли.

  Запорный клапан с электроприводом

Расстояния (A и B) — расстояния от опор до мест приложения нагрузок. Для 3 схемы А равна длине консоли балки.

Нормативная и расчетная нагрузки — нагрузки, на которые рассчитывается прямоугльная труба. Определить их можно, используя следующие статьи сайта:

  • калькулятор по сбору нагрузок на балку перекрытия;
  • пример сбора нагрузок на балку перекрытия;
  • пример сбора нагрузок на стропила.

Fmax — максимально допустимый прогиб, подбираемой по таблице E.1 СНиПа «Нагрузки и воздействия», в зависимости от вида конструкции. Некоторые значения этого показателя приведены в таблице 1.

Количество труб — чаще всего здесь выбирается «одна», но если есть потребность в ее усилении путем укладки трубы того же профиля рядом, то необходимо указать «две».

Расчетное сопротивление Ry— данный параметр зависит от марки стали. Основные значения этого показателя приведены в таблице 2.

Размер трубы — здесь необходимо определиться с ГОСТом (8645-68 или 30245-2003) и размером трубы. При желании можно выбрать профиль по обоим этим стандартам одновременно, а в результатах сравнить значения.

Бесплатные строительные онлайн калькуляторы и расчеты

Прежде чем приступить к непосредственному строительству, необходимо провести расчеты характеристик и расходов строительных материалов для той или иной конструкции. Этот этап позволит избежать разрушений постройки, деформации ее элементов и прочих негативных факторов.

Помимо этого, от качества произведенных расчетов зависит и быстрота проведения строительных работ, так как нехватка какого- либо материала способна затормозить дело, причем затормозить на неопределенный срок, в связи с тем, что дополнительный материал, в разгар строительного сезона, найти очень не просто.

Читайте также:  Преимущества и недостатки чугунных фитингов

Для вашего удобства и оперативной подготовки всего необходимого представлен специальный сайт строительных калькуляторов, с помощью которого легко избежать проблем с предварительной закупкой материалов и, соответственно, последующей нехваткой последних.

Онлайн калькулятор поможет произвести следующие расчеты:

  • Расход материалов, необходимых для возведения всех основных элементов постройки;
  • Расчет необходимых размеров и параметров элементов;
  • Расчет требуемых характеристик строительных материалов.

Многофункциональность онлайн сервиса является несомненным достоинством сайта. Строительный онлайн калькулятор позволяет производить огромное количество всевозможных строительных расчетов, не выходя из дома. Причем расчеты могут быть не только технического характера, но и экономического, что играет положительную роль на подготовительном этапе строительных работ.

Начало работы с онлайн калькулятором

Для начала работы требуется выбрать из списка необходимый раздел, находящийся в левой части экрана.

Для каждой калькуляции необходимо вводить требуемые показатели и данные, такие как размеры предполагаемой постройки, требуемые характеристики прочности, район расположения и так далее.

Большинство расчетов предполагает несколько направлений, то есть помимо основного расчета строительных материалов, возможно, попутно вычислить и размер конструкции. Каждый расчет снабжен дополнительными справочными материалами, а также иллюстративно подкреплен удобным чертежом.

Некоторые расчеты позволяют вычислить и экономическую составляющую предполагаемых работ, к примеру, указав стоимость одной единицы материала, калькулятор сосчитает общую стоимость всего необходимого количества.

Расчет дополнительных показателей производится при отмеченной галочке напротив интересующего пункта. Результат подсчета моментально появляется на экране после нажатия клавиши «Рассчитать».

Внизу результата удобно расположена кнопка «Распечатать».

Строительный калькулятор, или положительные моменты его использования

Представленные на сайте калькуляторы до минимума сокращают задачу длительных подсчетов, что существенно экономит время.

Каждый раздел и подраздел сайта позволяет:

  • Выбрать предполагаемые виды работ;
  • Рассчитать необходимые затраты и количество требуемого материала для проведения работ;
  • Ознакомиться с подробным чертежом;
  • Вычислить общую сумму, необходимую для покупки строительных материалов;
  • Ознакомиться со справочными материалами и рекомендациями;
  • Распечатать результат подсчетов;
  • специалисту.

Все без исключения подобные калькуляторы подразумевают небольшую погрешность. В связи с этим, предварительные подсчеты необходимо согласовывать со специалистами в данной области или же проверять ими уже проведенные расчеты.

Сайт находится в стадии доработки. Ведется постоянная разработка новых калькуляторов и расчетов. Обо всех найденных ошибках просьба сообщать по обратной связи.

Онлайн калькулятор для расчета желебобетонных балок перекрытия дома

  • Сбор нагрузок на балки перекрытия онлайн.
  • Расчет прямоугольной трубы
  • Расчет квадратной трубы
  • Расчет двутавра
  • Расчет швеллера
  • Расчет деревянной балки

Тут конечно же возникает вопрос: а как рассчитать остальные колонны, ведь нагрузка к ним будет приложена скорее всего не по центру сечения? Ответ на этот вопрос сильно зависит от способа крепления навеса к колоннам. Если балки навеса будут жестко крепиться к колоннам, то при этом будет образована достаточно сложная статически неопределимая рама и тогда колонны следует рассматривать как часть этой рамы и рассчитывать сечение колонн дополнительно на действие поперечного изгибающего момента, мы же далее рассмотрим ситуацию когда колонны, показанные на рисунке 1, соединены с навесом шарнирно (колонну, обозначенную красным цветом, мы больше не рассматриваем). Например оголовок колонн имеет опорную площадку — металлическую пластину с отверстиями для болтового крепления балок навеса. По разным причинам нагрузка на такие колонны может передаваться с достаточно большим эксцентриситетом:

Рисунок 2. Эксцентриситет приложения сосредоточенной нагрузки к колонне из-за прогиба балки навеса.

Балка, показанная на рисунке 2, бежевым цветом, под воздействием нагрузки немного прогнется (почему это произойдет, обсуждается отдельно) и это приведет к тому, что нагрузка на колонну будет передаваться не по центру тяжести сечения колонны, а с эксцентриситетом е и при расчете крайних колонн этот эксцентриситет нужно учитывать. Более точное определение эксцентриситетов зависит от жесткости колонны и балки, но мы в данном случае не будем учитывать жесткости и для надежности примем максимально неблагоприятное значение эксцентриситета. Случаев внецентренного нагружения колонн и возможных поперечных сечений колонн существует великое множество, описываемое соответствующими формулами для расчета. В нашем случае для проверки сечения внецентренно-сжатой колонны мы воспользуемся одной из самых простых:

(N/φF) + (Mz/Wz) ≤ Ry (3.1)

Т.е. предполагается, что внецентренное нагружение имеется только относительно одной оси.

  • В данном случае, когда сечение самой нагруженной колонны мы уже определили, нам достаточно проверить, подходит ли такое сечение для остальных колонн по той причине, что задачи строить сталелитейный завод у нас нет, а мы просто рассчитываем колонны для навеса, которые будут все одинакового сечения из соображений унификации.
  • Что такое N, φ и Ry мы уже знаем.
  • Формула (3.1) после простейших преобразований, примет следующий вид:
  • F = (N/Ry)(1/φ + ez·F/Wz) (3.2)
  • так как максимально возможное значение изгибающего момента Мz = N·ez, почему значение момента именно такое и что такое момент сопротивления W, достаточно подробно объясняется в отдельной статье.

Сосредоточенная нагрузка N на колонны, обозначенные на рисунке 1 синим и зеленым цветом, составит 1500 кг. Проверяем требуемое сечение при такой нагрузке и ранее определенном φ = 0.425

F = (1500/2050)(1/0.425 + 2.5·3.74/5.66) = 0.7317·(2.353 + 1.652) = 2.93 см2

Кроме того, формула (3.2) позволяет определить максимальный эксцентриситет, который выдержит уже рассчитанная колонна, в данном случае максимальный эксцентриситет составит 4.17 см.

Требуемое сечение 2.93 см2 меньше принятого 3.74 см2, а потому квадратную профильную трубу с размерами поперечного сечения 50х50 мм с толщиной стенки 2 мм можно использовать и для крайних колонн.

Примечание: Вообще-то изгибающий момент от эксцентриситета в наиболее опасном сечении, расположенном примерно посредине высоты колонны, будет в 2 раза меньше, соответственно и требуемая площадь сечения тоже будет немного меньше. Но как я уже говорил, при выполнении расчета не специалистом дополнительный запас по прочности никогда не помешает. К тому же в данном случае мы все равно принимаем большую площадь сечения из конструктивно-эстетических соображений.

Инструкция к калькулятору

Обращаю ваше внимание, что в нецелых числах необходимо ставить точку, а не запятую, то есть, например, 5.7 м, а не 5,7. Также, если что-то не понятно, задавайте свои вопросы через форму комментариев, расположенную в самом низу.

Исходные данные

Расчетная схема:

Длина пролета (L) — расстояние между двумя опорами или от жесткой заделки до края консоли.

Расстояния (А и В) — расстояния от опор до места приложения сил. В случае с 3-ей схемой — расстояние от опоры до края консоли.

Нормативная и расчетная нагрузки — нагрузки, которые действуют на уголок, выраженные в кг/м или кг.

  Какие трубы рехау лучше для отопления и водоснабжения?

F

Онлайн калькулятор расчет стойки из швеллера, двутавра, тавра и уголка на прочность, устойчивость и допустимую гибкость

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Виды балок:

  1. Деревянные

    — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

  2. Металлические

    — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Основные положения расчетных методик

Современные строительные методики расчета стержневых (балочных) конструкций на прочность и жесткость, дают возможность уже на стадии проектирования определить значение прогиба и сделать заключение о возможности эксплуатации строительной конструкции.Расчет на жесткость позволяет решить вопрос о наибольших деформациях, которые могут возникнуть в строительной конструкции при комплексном действии различного вида нагрузок.

Современные методы расчета, проводимые с использованием специализированных расчетов на электронно-вычислительных машинах, или выполняемые при помощи калькулятора, позволяют определить жесткость и прочность объекта исследований.

Несмотря на формализацию расчетных методик, которые предусматривают использование эмпирических формул, а действие реальных нагрузок учитывается введением поправочных коэффициентов (коэффициенты запаса прочности), комплексный расчет достаточно полно и адекватно оценивает эксплуатационную надежность возведенного сооружения или изготовленного элемента какой-либо машины.

Несмотря на отдельность прочности расчетов и определения жесткости конструкции, обе методики взаимосвязаны, а понятия «жесткость» и «прочность» неразделимы.

Однако, в деталях машин, основное разрушение объекта происходит из-за потери прочности, в то время как объекты строительной механики часто непригодны к дальнейшей эксплуатации из значительных пластических деформаций, которые свидетельствуют о низкой жесткости элементов конструкции или объекта в целом.

Сегодня, в дисциплинах «Сопротивление материалов», «Строительная механика» и «Детали машин», приняты два метода расчета на прочность и жесткость:

  1. Упрощенный (формальный), при проведении которого в расчетах применяются укрупненные коэффициенты.
  2. Уточненный, где используются не только коэффициенты запаса прочности, но и производится расчет контракции по предельным состояниям.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

  • величина наружных нагрузок, их положение;
  • параметры, характер, нахождение поперечного сечения;
  • продольные величины;
  • материал;
  • число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

Расчет на жесткость

Алгоритм исчисления:

В формуле обозначены:

  • M – max момент, возникающий в брусе;
  • Wn,min – момент сопротивления сечения (табличный показатель);
  • Ry – сопротивление на изгиб (расчётный показатель);
  • γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

Читайте также:  Самостоятельная установка теплообменника самоварного типа на трубу дымохода

  Коптильня-мангал-барбекю из газовых баллонов своими руками

  • рабочий план объекта;
  • определение характеристик балки, характер сечения;
  • определение max нагрузки, воздействующей на брус;
  • оценка точки max прогиба;
  • проверка прочности max изгибающего момента.

Какую нагрузку выдерживает двутавр. Вес двутавровой балки – важный фактор несущей способности

Балка 20

. Применение. Виды.Расчёт двутавра .

Двутавровая балка

— прокат, имеющий сечение буквы Н и означающий с латинского языка — «двурогая» с двух сторон («тавр» — бык). Расстояние между полками называют высотой, у двутавра 20го высота составляет около 200 мм или 20 см. Двутавр — это металлопрокат фасонного типа, изготавливаемый из строительной стали — ст3 и низколегированной стали 09Г2С.

Балка двутавровая

20 наиболее распространена в применении у строителей и монтажников, в первую очередь при устройстве каркасов с большими пролётами в зданиях, для перераспределения нагрузки с перекрытий на несущие конструкции.

Её используют для мостостроительства, изготовления кранов, автомобилей, трубопроводов, самолётных ангаров, в железнодорожном строительстве и т. д.

20й профиль производят по 8239ГОСТ двутавры стальные , госстандарту 26020-83,

двутавр гост

19425-74 и техническим условиям СТО АСЧМ 20-93.

Двутавр

20й подразделяют по СТО АСЧМ 20 на нормальную балку 20Б с параллельными гранями полок, широкополочную балку 20Ш и 20К — для колонн.Двутавр СТО АСЧМ 20-93 с высотой 20 см имеет грани полок, которые параллельны.

  • СТО двутавр
  • балка 09Г2С
  • Двутавр стальной

производится НЛМК, который и разработал данный стандарт. По такому стандарту производится также , которая также подразделяется на нормальную балку, колонную и широкополочную. Металлопрокат из низколегированной стали может употребляться как при очень низкой температуре, так и при высоких температурах, не подвергаясь деформации.

20Б1 имеет массу метра — 21,3 килограмм. Масса 20Ш1 составляет 30,6 кг в метре, вес колонной балки 20К1 — 41,4 кг,вес двутавра 20К2 — 49,9 кг.

Параметры двутавра 20Б1: высота (h)- 200 мм, ширина полки (b)- 100 мм, толщина стенки (s) — 5,5 мм, толщина полки (t)- 8,0 мм. Широкополочный 20й профиль 20Ш1 имеет следующие характеристики: h — 194 мм, b- 150 мм, s — 6 мм, t — 9 мм.

Колонная балка 20К1 обладает h 196 мм, b стенки — 199 мм, s стенки — 6,5 мм, t полки — 10, 0 мм.

Балка 20 по стандарту 19425 может быть монорельсовой (обозначается буквой М) и спец. (именуется буквой С). Этот ГОСТ распространяется на горячекатаные двутавры с полками, имеющими наклон внутренней поверхности полок.

Монорельсовый двутавр, известный как кран балка, предназначена для крановых путей, как несущий мост в козловом или мостовом кранах, как подрельсовая балка. Такое изделие характеризуется высокой прочностью и способно противостоять большим нагрузкам, давлению, скручиванию.

Специальная балка применима в стволе конструкций, которые обеспечивают движение подъёмных стволов, то есть для армирования стволов шахт, а также в сооружении лестниц и прокладке инженерных коммуникаций, креплении водоотливов.

Специальный профиль 20С имеет следующие параметры — двутавр размеры

: высоту — 200мм, ширину полки — 100 мм, толщину стенки — 7 мм, толщину полки — 11,4 мм. Масса 1 м такого двутавра составляет 27,9 кг. Вес погонного метра балки в таблицах теоретический, он нужен для того,чтобы рассчитать самостоятельно вес целой балки или необходимое количество метров и штук двутавра.

Итак, если балка 20 на складе металлоторгующей компании имеется длиной 12м, то чтобы выяснить вес одного хлыста, нужнодвутавр вес 1 метра 27,9 умножить на 12м. Зная общее количество метров балки, легко можно посчитать общий вес необходимого металлопроката.

На практике это лучше всего выяснить, уточнив у менеджеров , которые кроме того подскажут стоимость металла, двутавр цена за метр, выпишут счёт, чтобы

двутавр купить

, и решат все текущие вопросы по загрузке и доставке.

Двутавр ГОСТ 8239 89

— насортамент двутавров , имеющий отличие — наклон внутренних поверхностей полок. Такая балка с расстоянием между полками 200 мм имеет ширину этих полок — 100 мм, толщину металла посередине высоты — 5,2 мм, толщину полок 8,4 мм.

  Как наносится обозначение трубных и конических резьб

Какой двутавр

лучше?Горячекатаный двутавр или сварной?

Чтобы выбрать между горячекатаной балкой 20 и сварным профилем с похожими параметрами, вычиляют момент сопротивления. Для этого учитывают нагрузку на перекрытие, непрерывную и краткосрочную нагрузку, используют табличные данные — коэффициент прочности и допустимый прогиб для несущих конструкций.

Технические характеристики металлического профиля необходимы, чтобы их правильно применять в строительстве, ведь несмотря на большое разнообразие сфер применения, суть остается одна – создать надежную несущую конструкцию. Она позволяет преобразовывать архитектуру сооружений:

  • увеличивает ширину пролетов зданий;
  • значительно, примерно на 35%, уменьшить массу несущих конструкций;
  • существенно увеличить рентабельность проектов.

Говоря о достоинствах конструкции, нельзя не отметить и минусы, хотя их немного. Основные из них – это

  • необходимость применять при создании ребер жесткости дополнительную арматуру;
  • достаточно существенные трудозатраты, которые нужны для ее изготовления.

Однако, следует отметить, что с другой стороны дополнительные ребра жесткости дают возможность:

  • уменьшить общую металлоемкость сварной металлоконструкции, так как ощутимо уменьшают толщину стенок. Таким образом удается понизить ее стоимость, но целиком сохранить механические характеристики;
  • помимо этого облегченная конструкция экономична и с точки зрения устройства фундамента, поскольку после снижения общей массы можно использовать фундамент под БМЗ (быстровозводимые здания).

Чтобы найти двутавр, подходящий для конкретного случая, требуется произвести некоторые расчеты. Обычно для этого используют таблицы или онлайн калькуляторы. В их основе лежат заданные два параметра: расстояние от одной стены до другой и будущая нагрузка на строительную конструкцию.

Прочность двутавровой балки определяется такими параметрами, как:

  • длина,
  • метод закрепления,
  • форма,
  • площадь поперечного сечения.
  1. Большее распространение получили изделия с буквой «Н» в сечении.
  2. Жесткость металлической конструкции двутавра в 30 раз превышает жесткость квадратного профиля, а прочность, соответственно, в 7 раз.
  3. Длина данной металлоконструкции бывает разной, к примеру, в случае ГОСТ 8239-89 это 4 –12 метров, то есть в зависимости от сортамента размеры и вес балки двутавровой отличаются.

Помимо длины величина веса определяется толщиной металла и размерами граней. Поэтому для выполнения различных расчетов было введено понятие «вес метра балки двутавровой».

При покупке сварной конструкции обязательно требуется расчет на прочность, а для конкретного использования еще и расчет на прогиб.

Грамотный расчет нагрузки на двутавровую балку позволит обеспечить устойчивость конструкции к проектным воздействиям, то есть способность воспринимать их без разрушения.

Нагрузка собственного веса

Чтобы определить в случае необходимости вес двутавровой балки пользуются специальными таблицами, где расписаны ее характеристики, к примеру, габариты, марка стали и т. д. В таблице представлена теоретическая масса 1 м профиля.

балка двутавровая размеры и вес (ГОСТ 8239-89)

Пример расчета двутавра

Предположим необходимо рассчитать вес двутавра № 12 длиной в 3 метра

. Согласно таблице условная масса погонного метра данного профиля равна 11,50 кг. Если перемножить полученные значения, то получим величину общей массы – 34,5 кг.

Точнее значение веса сварной металлоконструкции можно посчитать, используя специальные онлайн калькуляторы.

В калькуляторе выбирают соответствующий номер двутавра и вводят необходимый метраж. Как видите, полученное значение больше рассчитанного нами на 0,12 кг.

Несущая способность

Среди всех типов балок двутавровая имеет наибольшую прочность, более того, она устойчива к температурным перепадам. Допустимая нагрузка на двутавр бывает указана на маркировке, как размер. Чем больше число, указанное в его наименовании, тем большую нагрузку может воспринимать балка.

Любой расчет предполагает изначальное знание размеров прокатного или сварного профиля, его длины и ширины. Проясним смысл значения ширины на примере самой популярной балочной опоры – колонны.

Предположим, что в сечении колонны лежит квадрат со стороной 510 мм, тогда на нее можно будет опереть профиль, для которого ширина не может превышать 460 мм. Это связано с тем, что двутавр придется приваривать к железобетонной подушке, а для сварочных швов понадобится запас, по крайней мере, в 40 мм.

После определения ширины переходят к выбору профиля и расчету нагрузки, воздействующей на профиль. Она представляет собой совокупность воздействий от перекрытия, а также воздействий временного и постоянного характера.

Нагрузку, выражающую величину нормативной нагрузки, собирают на длину 1 м профиля.

Но, расчет несущей способности двутавровой балки предполагает учет другого воздействия. Чтобы получить расчетную нагрузку, рассчитанное нормативное воздействие умножается на так называемый коэффициент прочности по нагрузке. Остается к результату прибавить уже подсчитанную массу изделия и найти его момент сопротивления.

Полученных данных достаточно, чтобы из сортамента подобрать профиль, необходимый для изготовления сварного профиля. Как правило, с учетом прогиба конструкции рекомендуется выбирать профиль выше на два порядка.

Сварная металлическая конструкция должна использовать примерно 70–80% от максимально допустимого прогиба.

Усиление

Если несущая способность двутавра оказывается недостаточной, то возникает необходимость ее усиления. Для различных элементов сварной конструкции этот вопрос решается по-разному.

К примеру, для элементов, воспринимающих нагрузки типа растяжения, сжатия или изгиба, используют такой вариант усиления: увеличивают сечение, иначе говоря, повышают жесткость, скажем, приварив дополнительные детали.

Теоретически – это один из лучших вариантов усиления, однако, при его реализации не всегда удается получить требуемый результат. Дело в том, что элементы в процессе сварочных работ нагреваются, а это несет за собой уменьшение несущей способности.

В какой степени можно ожидать такого понижения зависит от размеров двутавра и режима и направления сварочных работ. Если для продольных швов максимальное понижение оказывается в пределах 15%, то для швов в поперечном направлении оно может достичь и 40%.

Поэтому при усилении двутавра под нагрузкой категорически запрещено накладывать швы в направлении, поперечном к элементу.

Расчетно и экспериментально было доказано, что оптимального результата усиления под нагрузкой можно получить при максимальном напряжении в 0,8 R y , то есть 80% расчетного сопротивления стали, которая была использована для изготовления двутавра.

Ссылка на основную публикацию
Adblock
detector